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Work of cavity formation inside a fluid using free-energy perturbation theory
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A semiempirical approach, based on both the scaled particle theory of hard particle fluids and free-energy
perturbation methods, that predicts the work of formation of a cavity inside a model fluid is presented. The
method is tested using the pure component Lennard-Jones fluid. A good agreement between values obtained via
the theory and molecular simulation is observed even as the size of the cavity becomes larger than the effective
diameter of Lennard-Jones particles. The method also yields reasonably accurate estimates when the pressure
of the liquid is quite low, which is the case for liquids close to the coexistence line, or when the pressure is
negative, which is the case when the liquid is metastable.
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I. INTRODUCTION

Work of cavity formation inside a solvent is an importa
term contributing to the solvation free energy of a solu
particle. Hence, knowledge of the work of cavity formatio
is essential when predicting the free energy of formation
various structures such as colloids, vapor bubbles, etc.
side a solvent liquid. For example, the interaction betwe
apolar solutes and water is characterized by the hydroph
effect. These apolar solutes are usually modeled as
spheres@1#, and so become equivalent to cavities plac
within the waterlike solvent. A proper understanding of t
hydrophobic effect requires accurate predictions of the
vation free energies of these cavities in water.

The most widely used theory for predicting the work
cavity formation in a fluid is the scaled particle theory~SPT!
developed by Reisset al. @2#. SPT, in the original develop
ments, predicts the work of cavity formation inside a flu
comprised of hard particles. Within SPT, an interpolati
scheme is devised that connects the exact expression
cavity formation in the small cavity limit and in the limit o
cavities of macroscopic size. SPT is quite successful in p
dicting the work of cavity formation within hard particl
fluids, even for large cavities and over a wide range of b
densities. This has motivated many researchers to use
formalism of SPT to develop expressions for the work
cavity formation in fluids with attractive potentials and wit
out hard cores, such as the Lennard-Jones fluid. One o
earlier attempts to modify SPT was by Pierotti@3#. He de-
veloped a semiempirical approach in which the value of
pressure used in the equations of SPT was replaced by
obtained either experimentally or by molecular simulatio
The method was quite successful in predicting the work
formation for small cavities. For the case of liquids close
the coexistence line, the method was able to predict a dry
transition@4# at large cavity sizes, which is a lowering of th
local density near the cavity surface below that of the b
density. Later, Stillinger@5# improved upon this approach t
include the variance of density fluctuations within small v
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umes. As shown later in the paper, the performance of S
with these modifications, however, suffers when the size
the cavity becomes larger than the particle diameter, es
cially when the fluid is near the liquid coexistence line whe
the pressures are quite low or in the metastable liquid reg
where one encounters negative pressures. This conclu
was also noted by Henderson@6#.

A recent theory proposed by Lum, Chandler, and We
@1# ~LCW! was shown to be able to overcome some of th
difficulties. The theory uses a mean-field integral equat
along with a linear response theory recently developed
Weeks and co-workers@7#. The LCW theory requires that a
set of integrodifferential equations be solved by iteration
obtain the density profile around the cavity. Huang a
Chandler@4# applied the LCW theory to predict the work o
cavity formation in a Lennard-Jones liquid. They were ab
to obtain accurate values of the works of formation of ca
ties with sizes approaching nearly three times the effec
diameter of a Lennard-Jones particle, even when the liq
was close to the coexistence line. Later Katsov and We
~KW! @8# calculated the work of formation of the cavity fo
the same conditions as those given by Huang and Chan
@4# with fewer approximations as compared to the LC
theory. Although good estimates are obtained, both these
proaches require a fair amount of computational effort, p
ticularly if large cavity sizes are to be studied.

In an attempt to lessen the computational effort neede
generate works of cavity formation over a broad range
cavity sizes and fluid properties, we propose an alterna
method that is based on an extension of the SPT equat
via the application of the free-energy perturbation theory
liquids developed by Weeks, Chandler, and Andersen@9#. As
mentioned earlier, SPT gives an expression for the work
cavity formation inside a hard sphere fluid. In the perturb
tion theory approach, the liquid is treated as a system
particles governed mainly by the repulsive part of the int
molecular potential with the attractive part of the potent
acting as a small perturbation. The fluid interacting on
through the repulsive potential is considered as the refere
system. For practical calculations, the reference fluid is t
mapped onto an equivalent hard sphere fluid. Hence, it se
natural to consider an approach that combines element
both SPT and the free-energy perturbation theory to pre
ic
©2004 The American Physical Society05-1
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the work of cavity formation inside a fluid with an attractiv
potential. This is precisely the approach we develop and
cuss in this paper.

The remainder of the paper is structured as follows.
Sec. II, we describe our method for predicting the work
cavity formation in fluids with attractive potentials. In Se
III, we test the predictions of our approach against the res
obtained from Monte Carlo simulations of a Lennard-Jon
liquid. A comparison of our predictions with those genera
by other existing approaches is also made in this sect
Conclusions are presented in Sec. IV.

II. THEORY

Consider a system ofN particles in a macroscopic volum
V and at a temperatureT containing a spherical cavity o
radiusl. A cavity is defined as a spherical region inside t
fluid that is devoid of any centers of the particles compris
the fluid. Let rb denote the bulk fluid density andP the
pressure of the fluid. Without loss of generality, the volumeV
is assumed to be spherical in shape having a radiusR with its
center matching the center of the cavity (R@l). TheN par-
ticles interact with each other through a pairwise addit
potential given byu. The pair potential is divided into two
parts, namely,u0 which is comprised of the steep repulsiv
part andu1 which comprises the remaining weak attracti
part. LetA be the Helmholtz free energy of the fluid contai
ing the cavity. With the potential decomposed into two pa
we have@10#

A5A01A11O~b!, ~1!

whereA0 is the Helmholtz free energy of the reference s
tem that consists of particles interacting with a potential
u0 only, A1 is the first-order contribution to the free energ
due to the attractive potentialu1, andb51/(kT) with k be-
ing the Boltzmann’s constant. It should be noted that bothA0
andA1 are functions ofl. Following what is known from the
perturbation theory of uniform fluids@10#, we expressA1 in
an analogous manner:

A1~l!5
1

2E E u1~ urW12rW2u!r0
(2)~rW1 ,rW2 ,l!drW1 drW2 , ~2!

where r0
(2)(rW1 ,rW2 ,l)drW1drW2 is the conditional probability

that a particle is at positionrW1 in a volumedrW1 and another
particle is at positionrW2 in a volume drW2 inside a liquid
comprised of particles interacting with the reference pot
tial u0 and given a cavity of radiusl at the origin. Equation
~2! is formally exact. In its current form, however, Eq.~2!
cannot be evaluated sincer0

(2)(rW1 ,rW2 ,l) is generally not
known.

To proceed, we first rewriter0
(2)(rW1 ,rW2 ,l) as

r0
(2)~rW1 ,rW2 ,l!5r0

(1)~rW1 ,l!3r0
(1)~rW2 ,l!3g0

(2)~rW1 ,rW2 ,l!,
~3!

where r0
(1)(rW,l) is the local fluid density of the referenc

fluid at positionrW given a cavity of radiusl at the origin and
g0

(2)(rW1 ,rW2 ,l) is the pair correlation function of the nonun
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form reference fluid. Equation~3! is simply a definition of
g0

(2)(rW1 ,rW2 ,l). The three terms on the right-hand side of E
~3! are still unknown and in order to evaluate them we u
the following approximations. We use the mean-field a
proximation forr0

(1)(rW1 ,l) andr0
(1)(rW2 ,l), i.e.,

r0
(1)~rW,l!5H 0 if urWu,l

rb otherwise,
~4!

andg0
(2)(rW1 ,rW2 ,l) is replaced by the pair correlation functio

for a uniform reference fluid,g0
(2)(rW1 ,rW2). The net effect of

these approximations is that correlations inside the fluid
to the presence of the cavity are completely ignored exc
for the fact that the density inside the cavity is zero. Desp
these simplifications, the approach, developed further be
yields reasonably accurate predictions of the work of cav
formation ~see Sec. III!.

With our chosen approximations, all terms in Eq.~2! are
functions ofrW12rW2 only. Hence, we can integrate over, sa
the position of particle 1 and the vector defining the orien
tion between particles 1 and 2. LetrW1[$r ,u1 ,f1% and rW2
2rW1[$x,u2 ,f2%, giving us a total of six variables. Due t
spherical symmetry we can immediately integrate over v
ablesu1 andf1. The lower and upper limits of the integra
overr arel andR, respectively. Using Eqs.~3! and~4! in Eq.
~2!, and replacingg0

(2)(rW1 ,rW2 ,l) by g0
(2)(rW1 ,rW2)5g0(x), the

limits of the integral overx are functions ofr andl. We can
now integrate over the variablesu2 andf2 for a givenx, but
we also need to account for Eq.~4!. The integration overu2
andf2 is, however, equivalent to determining the area o
sphere of radiusx that lies outside a cavity of radiusl when
the center of the two spheres are separated by a distanr
~see Fig. 1!. In other words, because of Eq.~4!, u2 and f2
must be chosen such that particle 2 does not lie inside
cavity. Let f (x,r ,l) represent the fraction of the total surfac
area of the sphere of radiusx that is located outside the
cavity when the two spheres are separated by a distancr.
Therefore, Eq.~2! can now be rewritten as

FIG. 1. Two-dimensional view of a cavity of radiusl and a
sphere of radiusx located at a distancer from the cavity center. The
thick solid line is the surface area of the sphere of radiusx that is
outside the cavity. The functionf (x,r ,l), as defined in Eq.~6!, is
the ratio of this surface area that falls outside the cavity to the t
surface area of the sphere. Note thatr represents the distance t
particle 1 from the center of the cavity andx denotes the distance
between particles 1 and 2.
5-2
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A1~l!5
rb

2

2 E
l

R

4pr 2E
0

`

4px2f ~x,r ,l!g0~x!u1~x!dx dr,

~5!

where

f ~x,r ,l!5H 1 if x<r 2l

1

2
1

x21r 22l2

4xr
if r 2l,x,r 1l

1 if r 1l<x

. ~6!

It should be noted thatR@l in Eq. ~5!. Also, the upper limit
of the inner integral~over x) is formally a function ofr and
R. The error involved in replacing this upper limit with̀
~done for convenience! should be inconsequential since w
eventually consider differences inA1. Hence, the propertie
of the boundary~whereR@l) should be irrelevant.

Now, the work of formation,W, of a cavity of radiusl
inside a fluid is the difference between the Helmholtz fr
energy of a fluid with the cavity,A(l), and that without a
cavity,A(0). Using Eq.~1! we can expressW(l) as follows:

W~l!5A~l!2A~0!5A0~l!2A0~0!1A1~l!2A1~0!

5W0~l!1W1~l!. ~7!

W0(l) in Eq. ~7! is the work of forming of a cavity of radius
l inside the reference fluid.W1(l) is the contribution to the
work of cavity formation due to the attractive part of th
potential.
e
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Equation~7! is valid for a closed system, i.e., at consta
N,V, andT. Hence, when a cavity is grown inside such
system, the bulk density of the surrounding fluid chang
For a macroscopic system, the change in bulk density is
significant and hence, the work of cavity formation is we
defined for a given state point characterized byT andrb . In
other words,W,W0, andW1 are intensive variables~in that
for large enough systems these variables are independe
the size of the system as long asrb is constant! even though
A,A0, andA1 are extensive variables~dependent on the sys
tem size!. In using Eq.~7!, the value of the volumeV has to
be very large so that the same bulk density is obtained
each value ofl. SinceA1 is extensive, the second line of Eq
~7! requires that the difference of two very large quantit
A1(l) andA1(0) must be calculated. To avoid the numeric
errors that result in calculatingW1(l) via A1(l)2A1(0),
we instead rewriteW1 as follows:

W1~l!5E
0

lS ]A1

]l D
N,V,T

dl. ~8!

In this equation, (]A1 /]l)N,V,T is an intensive variable~for
large enoughV), ensuring that the calculated value ofW1 is
well behaved asV approaches a large value.

Substitutingrb5N/(V2vc) into Eq. ~5!, whereN is the
number of particles,V(54pR3/3) is the total volume of the
system, andvc(54pl3/3) is the volume of the cavity, we
obtain upon differentiatingA1 with respect tol that
S ]A1

]l D
N,V,T

5
64p3r2l2

V2vc
E

l

R

dr r 2E
0

`

dx x2f ~x,r ,l!g0~x!u1~x!18p2r2

3E
l

R

dr r 2E
0

`

dx x2S ] f

]l D
x,r

g0~x!u1~x!28p2r2l2E
0

`

dx x2f ~x,l,l!g0~x!u1~x!. ~9!
, an
ticle
the
An important approximation used while deriving Eq.~9! is
that g0 is kept constant. In general, a change inl while
keepingN, V, andT constant alters the bulk density of th
surrounding fluid, thereby affecting the value ofg0. Also,
while evaluating Eq.~9!, R has to be sufficiently large suc
that the values calculated from the obtained integrals co
spond to cavity growth within a bulk fluid. In our calcula
tions, the value ofR chosen was equal to 100l.

In order to calculateW0(l), we map the reference syste
to a hard sphere fluid of densityrb and use an expression fo
the work of cavity formation within a hard sphere fluid o
tained by Matyushov and Ladanyi@11#. Incorporating the
more accurate Carnahan-Starling equation of state@12# for
hard spheres into the framework of SPT, the work of form
a cavity with radiusl.0.5d within a hard sphere fluid
whered is the diameter of the hard sphere particle, is giv
by @11#
e-

g

n

bW0~l!5
3h

12h
t1

3h~22h!~11h!

2~12h!2
t2

1
h~11h1h22h3!

~12h!3
t32 ln~12h!, ~10!

wheret52l/d21. For cavities with radii smaller than 0.5s,
the exact relation is used@2#:

bW0~l!52 ln@128h~l/d!3#. ~11!

In the above equations,h @5prd3/6# is the packing frac-
tion.

As the reference system is mapped onto a hard sphere
expression for the effective hard sphere diameter of a par
is required. The mapping scheme used for determining
5-3
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hard sphere diameterd is described below. The pressure
the fluid,P, with both repulsive and attractive interactions,
given by the van der Waals–type equation, is

P5P012pr2E
0

`

r 2g0~r !u1~r !dr, ~12!

whereP0 is the pressure of the reference fluid. Normally,P0
and g0 are estimated to yield a prediction ofP. Here, the
values ofP andg0 are assumed to be knowna priori, pos-
sibly from molecular simulations. Hence,P andg0 are used
to evaluateP0. Then, an appropriate equation of state o
hard sphere fluid is used and a value ofd chosen so that the
pressure of the hard sphere fluid matchesP0. It should be
noted that Eq.~12! is obtained from Eqs.~1! and ~2! by
differentiating A with respect toV after neglecting the
changes ing0 due to the change in density. We use the
curate Carnahan-Starling@12# equation of state for determin
ing P0. Finally, with d determined, andW0 now known, the
work of forming a cavity of radiusl is then obtained from
Eqs.~7!–~9!. This method of determiningd is different from
the one given by the blip function expansion as used
Weeks, Chandler, and Andersen@9#. This was necessary t
get consistent thermodynamics in Eq.~14! which is ex-
plained below. The difference between the values ofd as
obtained from these two methods is, as shown in Sec
very small.

Equation~9! can be examined for self-consistency wh
the cavity approaches macroscopic sizes. We know in
limit of l→`, i.e., the cavity becomes a hard wall, that@2#

W~l!5
4pl3

3
P14pl2g`S 12

2d

l D1•••, ~13!

whereg` is the boundary tension between the bulk fluid a
a hard wall, andd is the Tolman length indicating the firs
order correction to the boundary tension due to curvature
other words, Eq.~13! implies that

lim
l→`

1

4pl2

]W

]l
5P. ~14!

Substitution of Eqs.~7!–~11! into Eq. ~14! does in fact lead
to Eq. ~12!, thus satisfying the self-consistency needed
the expression of the work of cavity formation inside a flu
at a pressureP.

III. COMPARISON WITH MOLECULAR SIMULATIONS

In order to evaluate the performance of our method,
compared the predictions from Eqs.~7! to ~11! to the work of
cavity formation calculated directly from molecular simul
tions. The reversible work of forming a cavity was calculat
via Monte Carlo ~MC! simulations within the isobaric
isothermal ensemble. The center of the cavity was kept fi
at the origin, or the center, of the simulation cell. The pr
sure of the fluid was chosen such that the bulk density o
uniform fluid at the given temperatureT is equal torb .
Constant pressure simulations allowed us to maintain a d
03610
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sity far away from the cavity surface equal torb with a
smaller number of particles that would have been require
a constant volume simulation.

The work of cavity formation was determined from th
following relation @2,13#:

W~l!52kTln@Pr~l!#, ~15!

where Pr(l) is the probability of successfully inserting
cavity of radiusl at a given point in the fluid. Pr(l) can be
directly calculated from a standard MC simulation, in whi
the probability of successfully inserting a cavity of sizel is
determined. At moderate to high fluid densities, however,
chance of inserting a cavity in whichl.s becomes low, and
the estimation of Pr~l! becomes statistically poor. To ove
come this problem, an umbrella sampling scheme@14# is
employed that favors the formation of large cavities. A cav
of a given size is first introduced into the simulation cell a
remains fixed at the center of the cell. In addition to t
standard MC displacements of the particles~all particle
moves that bring a particle center into the cavity are
jected!, another MC trial move is implemented that attemp
to change the radius of the cavity while particle positions
held fixed~an attempted increase inl is rejected if an exter-
nal particle center is found within the cavity surface!. A bi-
asing potentialc is added to the standard MC samplin
scheme to ensure that large cavity sizes are obtained du
the simulation. Since the resulting ensemble averages
obtained within the biased simulation, the results must
corrected at the end in order to obtain the ensemble aver
for the original, unbiased system. Good statistics for the
ased averages will be obtained ifc(l)52W(l). Unfortu-
nately, c is not known a priori. Thus, a series of biase
simulations is run for several successive windows in wh
the cavity radius is restricted to remain within some ran
Dl. The work of insertion is calculated during each windo
and then curve fitted to a polynomial inl. This current esti-
mate of the work of cavity formation is extrapolated a
used as an estimate for the biasing potential within the n
simulation window. The size of the window is then adjust
until a uniform distribution of the cavity radii was obtaine
thereby ensuring statistically good estimates of the bia
averages. The work curves of each window are fina
‘‘linked’’ together by adjusting the value of the constant
the curve fit to obtain the totalW versusl profile.

The number of windows required to obtainW versusl
increases asl increases. In addition, the range ofl sampled
within each simulation window,Dl, decreased with an in
crease inl. Thus, the number of simulation windows rapid
increased as larger cavity sizes were studied. In conjunc
with the relatively large system sizes used in this study,
rapid increase in the number of windows prohibited us fro
determining the work of forming cavities of radii great
than three particle diameters.

Works of cavity formation were obtained for the Lennar
Jones fluid, in which the Lennard-Jones potentialuLJ be-
tween two particles separated by a distancer is given by

uLJ~r !54eF S s

r D 12

2S s

r D 6G , ~16!
5-4



to
es
at
ed
re
i-
ai
th
ro
n

q

t
so
ed

o
cu

r

-
in

ie
he
he

uid
al
s an

ic
s

of

of
r of
s
om
ear

cle

of

our
te.
om
la-
bly

of
y as
u-

ual

m
at
o
ua
e
te

rlo
he
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wheres is the finite distance at which the potential goes
zero ande is the value of the minima in the Lennard-Jon
potential. The potential was also truncated and shifted
distance ofr c . The truncated and shifted potential eliminat
the need to apply long-range corrections. Long-range cor
tions may be applied only if the density of the fluid is un
form beyond the cutoff radius. Since our simulations cont
a cavity, necessarily generating an inhomogeneity within
simulation cell, long-range corrections would not be app
priate. The resulting potentialu used for simulation was the
equal to

u~r !5H uLJ~r !2uLJ~r c! if r<r c

0 if r .r c .
~17!

Figure 2 displays theP-T projection of the phase diagram
of the Lennard-Jones fluid with the potential given by E
~17!. The cutoff distancer c is equal to 4s. Figure 2 also
includes the superheated liquid spinodal. The binodal and
spinodal were obtained from the equation of state of John
et al. @15#. The critical parameters of this fluid are estimat
to be Tc* 5kT/e51.246,rc* 5rs350.308, andPc* 5Ps3/e
50.118. Comparisons between the values of the work
cavity formation as predicted by our method and by mole
lar simulations were done at a temperatureT* 50.8, close to
the triple point temperature, and at four separate pressu
namely,P* 50.9 ~stable liquid away from the binodal!, P*
50.0 ~liquid close to coexistence!, P* 520.2 ~slightly su-
perheated liquid!, andP* 520.3747~superheated liquid ap
proaching the spinodal!. These state points are also shown
Fig. 2.

In the case of superheated liquids, previous stud
@16,17# have shown that there exists an upper limit to t
size of a cavity that can be inserted into the liquid. T

FIG. 2. Pressure-temperature projection of the phase diagra
the Lennard-Jones fluid with the potential truncated and shifted
distance of 4.0s. The solid line is the binodal and the dashed-d
line is the liquid spinodal. The lines were calculated from the eq
tion of state given by Johnsonet al. @15# The circles represent th
points at which Monte Carlo simulations were performed to de
mine the work of cavity formation.
03610
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largest cavity that can be inserted into the metastable liq
is called the critical cavity. Any cavity larger than the critic
cavity, when placed inside the superheated liquid, cause
instability that leads to phase separation~i.e., the liquid be-
gins to phase separate towards the vapor phase!. This insta-
bility, which has been shown to be a true thermodynam
instability @17#, prevents us from calculating work profile
for cavities larger than the critical cavity. ForT* 50.8 and at
pressuresP* 520.2 and P* 520.3757, the radii of the
critical cavities are 6s and 2.1s, respectively@16,17#. At
T* 50.8 andP* 50.0 the liquid is also superheated~the co-
existence pressure isPcoex* 56.17431023 @15#!, but the value
of the critical cavity is exceedingly large@16,17#.

Each simulation consisted of an equilibration period
10 000 MC cycles~trial moves per particle! followed by a
production run of 100 000 MC cycles. The system size
each simulation was at least 3000 particles. The numbe
particles within the simulation cell for each window wa
constantly adjusted to ensure that the density profile far fr
the cavity surface approached the bulk density at least n
the edge of the simulation cell. Also, since the interparti
potential was truncated at 4.0s, an initial simulation box size
of twice the sum of the cavity radius and 4.5s was used.
Bulk densities were estimated from the equation of state
Johnsonet al. @15#. An evaluation of the density profile
around the cavity for various cavity sizes revealed that
choice of system size within each window was appropria

Figures 3–6 show a comparison of the predictions fr
our method with those obtained from Monte Carlo simu
tions. The figures also include the predictions of the suita
modified SPT relations of Peirotti@3# and Stillinger@5#. Both
Pierotti’s and Stillinger’s methods require the specification
an effective hard sphere diameter. We chose this quantit
equal to the maximum distance for which the radial distrib
tion function of the Lenanrd-Jones fluid is essentially eq

of
a

t
-

r-

FIG. 3. Work of cavity formation,W, plotted as a function of the
cavity radiusl at T* 50.8, P* 50.9. The bulk densityrb* of the
fluid is 0.8473. The circles represent calculations from Monte Ca
simulations, the solid line is the prediction from our method, t
dotted line is the prediction from Stillinger’s method@5#, and the
dashed-dot line is the prediction from Pierotti’s method@3#.
5-5
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to zero. For the range of densities at which the calculati
were performed, this quantity remained almost constant
was chosen to be equal to 0.885s. This criterion was used by
Stillinger in his paper when predicting the work of cavi
formation inside water. Also, Stillinger’s method requires t
value of the surface tension of a planar liquid-vapor int
face. This value for the temperatureT* 5kT/e50.8, chosen
after interpolation from the data given in Holcombet al.
@18#, was taken to be 0.7e/s2.

In order to use Eq.~9!, we divided the potential using th
prescription of Weeks, Chandler, and Anderson@9# whereby

u0~r !5H uLJ~r !1e if r<21/6s

0 if 21/6s,r ,
~18!

FIG. 4. Work of cavity formation,W, plotted as a function of the
cavity radiusl at T* 50.8, P* 50.0. The bulk density,rb* , of the
fluid is 0.7803. For an explanation of the symbols and lines see
3.

FIG. 5. Work of cavity formation,W, plotted as a function of the
cavity radiusl at T* 50.8, P* 520.2. The bulk densityrb* of the
fluid is 0.7628. For an explanation of the symbols and lines see
3.
03610
s
d

-

u1~r !5H 2e2uLJ~r c! if r<21/6s

uLJ~r !2uLJ~r c! if 2 1/6s,r<r c

0 if r c,r .

~19!

The radial distribution function of the uniform referenc
fluid, g0(x), needed to evaluate Eq.~9! and determine an
effective hard sphere diameter via Eq.~12! was calculated by
Monte Carlo simulations of a uniform fluid interacting viau0
only. The values of the effective hard sphere diameter, at
various state points for which calculations were performed
this paper, are shown in Table I. The values vary fro
0.992s to 1.005s. The values ofd given by the blip function
expansion@9# vary from 1.02s to 1.021s, which are not very
different from our values.

As can be seen from Figs. 3–6, the three methods,
comparison with the simulation results, perform quite w
when predicting works of cavity formation for radii less tha
s. The predictions of the three methods begin to differ, ho
ever, when cavities exceed two to three times the size of
Lennard-Jones particle diameter. On comparison with sim
lation results, our method consistently outperforms both
Pierotti’s and Stillinger’s methods. Figure 3 shows the wo
profile for a cavity inside a stable liquid (P* 50.9) as a

TABLE I. Effective hard sphere diameterd of the reference fluid
as calculated from Eq.~12! for the various state points discussed
the paper.

T* P* rb* r c /s d/s

0.8 0.9 0.8473 4.0 1.005
0.8 0.0 0.7803 4.0 1.001
0.8 20.2 0.7628 4.0 0.998
0.8 20.3757 0.74 4.0 0.996
0.85 0.022 0.7 2.5 0.992

g.

g.

FIG. 6. Work of cavity formation,W, plotted as a function of the
cavity radiusl at T* 50.8, P* 520.3757. The bulk densityrb* of
the fluid is 0.74. For an explanation of the symbols and lines
Fig. 3.
5-6
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function of the cavity radius. Although the predictions of t
three methods are in a good agreement with values ca
lated from Monte Carlo simulations, our method provides
closest agreement. When we consider a liquid close to
coexistence line, large differences between the methods
gin to develop. ForT* 50.8 andP* 50.0 ~Fig. 4!, the work
of cavity formation for a cavity of radius 3s as calculated
from simulations is '134kT. Pierotti’s and Stillinger’s
methods underpredict this value by 40kT and 20kT, respec-
tively. Our method predicts a value of 128kT which only
differs from the simulation result by 4%. Similar trends a
observed for the results shown in Fig. 5, which contains
work profiles for a negative pressure liquid (P* 520.2).
This negatively pressured liquid lies in the two-phase reg
of the liquid-vapor phase diagram and is metastable.

In the case of Fig. 6, which also includes results fo
metastable liquid under negative pressure (P* 520.3757),
the predictions from our method match the simulation res
quite well up to a cavity of radius 2.1s. Under these condi-
tions, 2.1s is the radius of the critical cavity@16,17#. ~The
current methods are not capable of determining the siz
the critical cavity, and so yield predictions beyond the critic
cavity.! Our method matches simulation results quite well
to 1.6s and is certainly more accurate than that of Piero
Stillinger’s method, however, yields values that are com
rable to our method, though this is most likely a fortuito
occurrence~at other negative pressures not far fromP* 5
20.3757, Stillinger’s approach does not match the simu
tion results as well!.

An important point to be noted is that the predictions
Pierotti and Stillinger can be improved by choosing a diff
ent value of the effective hard sphere diameter. Neverthe
the optimized value of the effective hard sphere diame
varies according to the temperature and pressure, and w
unaware of any method to determine this optimized diam
a priori.

The eventual appearance of a drying transition abou
large enough cavity within a superheated liquid causes
work profile to exhibit a change in curvature as the radius
the cavity approaches the critical size. Each of the th
methods presented yields a change in curvature at low
negative pressures, but this is a consequence of the lim
form of W, where the leading order term in Eq.~13! is pro-
portional to the pressure. Each approach is unaware of
limit of stability that appears at the critical cavity. Hence, t
changes in curvature exhibited by such methods do not
essarily coincide with the simulation results. Despite th
our method still yields reasonably good estimates of
work profiles at negative pressures.

We also compared the predictions of our method w
those from the LCW theory and the method of KW. The
results are shown in Fig. 7 forP* 50.022 andT* 50.85.
The data for the LCW predictions were obtained from Fig
of Ref. @4# and for the KW predictions were obtained fro
Fig. 7 of Ref. @8#, where the Lennard-Jones potential w
truncated and shifted at a distance of 2.5s. The performance
of our approach is comparable to both of these approac
The LCW predictions are closer to the simulation results
large cavity radii (>2s). On the other hand, our approac
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performs better at intermediate cavity radii~betweens and
2s!. The KW approach which is more rigorous than t
LCW approach also performs better at intermediate ca
radii but it starts deviating from the simulation results a
smaller radius~1.5s! as compared to our approach. Althoug
we have not extensively compared the performance of th
three approaches, Fig. 7~along with Figs. 3–6! does indicate
that our approach provides a reasonable alternative me
to estimating works of cavity formation, even though t
amount of rigor incorporated is less than the LCW and
KW approach. In addition, the possibility of improving ou
method does exist through the incorporation of the high
order terms of the perturbation expansion in Eq.~5!.

We conclude this section by considering the relative m
nitudes ofW0, the contribution from the reference system
andW1, the contribution from the perturbation. Both of the
terms contribute to the work of cavity formation,W @see Eq.
~7!#. Figure 8 shows a comparison ofW0 and2W1 (W1 is
negative since it is the contribution from the attractive p
tential!. Surprisingly the two terms are of equal order
magnitude, thoughW0 is always greater than2W1. In other
words, the right-hand side of Eq.~7! is the difference of two
large positive numbers. This makes the close agreemen
tween our method and simulation all the more striking, giv
that in deriving Eq.~9!, we have completely ignored th
contributions to the free energy due to density correlatio
arising from the presence of the cavity inside the fluid.
addition, the fluid structure of the reference fluid~purely re-
pulsive potential! in the presence of a cavity is very differen
from ~especially at low and negative pressures! the profiles
that develop around a cavity within the Lennard-Jones fl
@7# ~comprised of both repulsive and attractive forces!. At

FIG. 7. Comparison of the predictions of the work of cavi
formation,W, from our approach~solid line!, the LCW @4# theory
~dashed line!, and the KW approach~dotted line! with the those
calculated from Monte Carlo simulations~circles!. The data for the
LCW theory prediction are taken from Fig. 2 of Ref.@4# and that for
the KW approach are taken from Fig. 7 of Ref.@8#. The liquid is at
a temperatureT* 50.85 and at a pressureP* 50.022. The bulk
density of the fluid isrb* 50.7. The Lennard-Jones potential for th
calculation has been truncated and shifted at a distance of 2.5s.
5-7
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low pressures, for example, the Lennard-Jones fluid exh
a drying transition when the cavity radii exceed about 1.s.
The reference fluid, which is similar to a hard sphere fluid
that it consists of steeply repulsive intermolecular forc
only, does not produce a drying transition at any cavity s
~the local density at the cavity surface always exceeds
bulk density and increases with an increase in the ca
radius, asymptotically at a value ofP/kT @2#!. The presented
work suggests that this difference between the structures

FIG. 8. Comparison of the relative magnitudes of the refere
term W0 and the perturbation termW1 that both contribute to the
total work of cavity formation atT* 50.8 andP* 50.9. The bulk
density of the fluid isrb* 50.8473. The solid line representsW0 and
the dotted line represents2W1.
hy
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develop around cavities appears to play a minimal role in
predicted values of the work of cavity formation generat
by Eqs.~7! and ~9!, at least up to cavity radii that are thre
times the diameter of the fluid particles.

IV. CONCLUSIONS

We have presented a semi-empirical method for calcu
ing the work of cavity formation inside a fluid, specificall
for fluids that contain an attractive term in their intermolec
lar potential. The expressions were derived by combin
SPT and the free-energy perturbation theory of Weeks, Ch
dler, and Andersen@9#. For the reference system, we us
expressions obtained from SPT. In calculating the pertur
tion term, we invoked the mean-field approximation, igno
ing the density correlations generated inside the fluid due
the presence of the cavity. The predictions of our meth
matched simulation results quite well, yielding better pred
tions than the methods of Pierotti@3# and Stillinger@5#. Our
method is also comparable to the LCW and the KW meth
~at least for the state point considered here!, an approach tha
incorporates more rigor by taking into account the struct
of the surrounding fluid. Overall, our method appears to
valid over a broad range of conditions, even performing w
when the fluid is metastable. Moreover, although the pr
sure of the fluid and the radial distribution function for th
uniform reference fluid are needed as input, these quant
are straightforward to obtain from molecular simulations.
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